If it's not what You are looking for type in the equation solver your own equation and let us solve it.
v^2-4=96
We move all terms to the left:
v^2-4-(96)=0
We add all the numbers together, and all the variables
v^2-100=0
a = 1; b = 0; c = -100;
Δ = b2-4ac
Δ = 02-4·1·(-100)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20}{2*1}=\frac{-20}{2} =-10 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20}{2*1}=\frac{20}{2} =10 $
| |3z+|)+z=2z+4 | | 4x-45=11x+74 | | 7/p+2=-8/5p-4 | | -13.8=b/15-14 | | -13.8=b | | 9a+4=4 | | 6+b/10=5.8 | | (4-z)(4z+7)=0 | | -1/4a+1=7+4.5a | | 64k^2-9=7 | | 6.7=a/10+6 | | 7r^2=259 | | 9x+5x+20-92=180 | | 2x+5x-124=86 | | 3/5x-2=24 | | -8x=-2(2x=8) | | 5x+48+7x=15(x+4) | | 15=-3w-6 | | (-1/5x^2)+4=-1 | | 1/5x^2+4=-1 | | 3(4x-15)=39 | | |9x+84|=|2x-7| | | 1/3x+5/6=1/2x+2 | | 6x−30=42 | | 2x^2+3x+1=66 | | 35+33+x=180 | | 7^x-2=3x+6 | | -3(5-2x)+8=4-3(2x+1 | | 82-5/2x=62 | | -6n+13=67 | | 8x-19=x+23 | | 53=23+5x |